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INTRODUCTION

Experimental observations indicate that when metallic materials are

subjected to cyclic torsional loading, a hardening behavior similar to the

case of uniaxial loading occurs. In a previous paper, Wu and Yip (ref 1)

successfully applied the endochronic theory of plasticity to describe the

cyclic hardening phenomenon under uniaxial loading. The present report

- applies this theory to the case of cyclic torsional loading of a thin-walled

cylinder and a solid cylinder of circular cross-section, and it investigates

the residual stress distribution.

The endochronic theory with plastic strain defined intrinsic time has

previously been applied to describe several different experimentally observed

phenomena (refs 1-6). We are now giving special attention to the prediction

of residual stress by use of this theory.

Residual stresses are receiving increased attention by the engineering

community. The primary goals are the reduction of cost of materials used in

structures, the extension of the useful lifetime of existing structures, and

the achievement of greater reliability of structural components through the

understanding of residual stress distribution. This has led to much activity

in the study of residual stress measurement methodologies, especially those

which may be applied to nondestructuve inspection. However, analytical

investigation is also important so that residual stress fields in test

specimens and engineering components may be determined. This information is

-,particularly useful in the engineering design. In fact, by knowing the

residual stress distribution, its beneficial effects may be exploited.

References are listed at the end of this report.
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4 dsj
dnij deij kl 2- (2)

where SiJ is a strain-like tensor, eij and sij are deviatoric strain and

stress tensors respectively, kl is a positive constant such that 0 4 kl 4 I,

and Po is shear modulus.

The general constitutive equation for shear response of a material with

*> an elastic hydrostatic response and no coupling between deviatoric and

" hydrostatic behavior is:

sij 2 f u(z-z') --- dz' (3)
o dz'

where z is an intrinsic time which is related to [ by the following time

scale: d:.'.:.-- . (:)(4)
dz

It has been shown in Reference 12 that f( ) describes isotropic hardening and

is therefore termed the hardening function.

Define

:u(z) = oOG(z) (5)

where G(0) 1 1 indicates initially elastic response. Using the Laplace

transform technique (for details see Reference 12), Eq. (3) becomes

dnJ

si = 21o p(z-z')--- dz' (6)
o dz'

- in which, for the case of kj - 1,

P(z) - p06(z) + pl(z) (7)

*0 where Pl(z) is composed of a finite sum of exponential terms, Po is constant,

and 6(z) is the Dirac delta function. A general constitutive equation in

,. ,
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terms of initial yield stress Sy and plastic strain 11ij(kl 1 1) can be

obtained as dil fz d~lJ

sij- Sy ... + 2of Pl(z--z') --- dz' (8)
dz 0 dz'

by substituting Eq. (7) into Eq. (6) and defining sy = 2poP o . Note that at z

- 0:

-i (9)slj Sydz [z=O

Also from Eq. (2), the condition Slij - 0 gives the relation,

sij - 2voeij (10)

Equation (10) merely attests to the fact that while z 0, the deformation

process is reversible and therefore the deviatoric stress response is elastic.

DESCRIPTION OF CYCLIC SHEAR RESPONSE

For pure shear deformation with pl(z) represented by one exponential

term, one has
dr

dil d - ... (11a)2 po

and

2poPl(z) = 2ue -  (11b)

where n is total shear strain and S1 is plastic shear strain. Equation (8)

yields
T d Q + 21 f e- a(z- z ') --- dz' (12)

dz o dz'

with
d;
-- f(z) and dr. IdS1I (13)
dz
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and T is the shear yield stress. Using Eqs. (12) and (13) and a suitable

function f, the governing equations for torsional test of a thin-walled tube

during loading, unloading, and reloading can be derived. The initially

elastic unloading (reloading) response and following Bauschinger effect will

be governed by the material property itself, provided that the intrinsic time

measurement is correct.

If the first unloading of stress-strain curve begins when intrinsic time

measure C reaches C*, the positive property of C requires Eq. (13) to be

dC- -dS (14)

during unloading. Define C* and C as loading and unloading measures around

the neighborhood of C* in C space. Then Eq. (12) leads to

. dql z* - d

- ry -- I + 2p1 f e-c(z-z') -- dz'
dz' (15)

dfZ*

T+  -d + 211 j, + e-a(z-z') - dz' 16)Ydz,, * o dz'
-. +

where Tr and r+ are st.ress states nearby C* at loading and unloading

processes, respectively. In the limit, when C + C* and C* +

T- - ,+ 2Ty (17)

dzlc*

Therefore, the shear stress is discontinuous with a discontinuity of magnitude

dcI
A- 2y- (18)• dz[ €*

in the initially elastic unloading region. If the consequent loading

reversals take place at **, .... then there is an elastic change of

5
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magnitude

AT dzj:**, ***, (19)

in the shear stress at each point of load reversal. During these elastic

responses, the values of C and z remain unchanged.

During the elastic response, d4 is zero and the constitutive equation is

simply

dT - 2p o dn (20)

Once the change in stress is larger than T- - T+ , then the material behavior

is governed by Eq. (12).

TORSION OF A CIRCULAR CYLINDER

In laboratory experiments on torsion of solid bars, the recorded data are

usually the strain at the outer fiber and the amount of externally applied

torque. In order to describe these experimental results, the shear

constitutive equation established in the previous section and based on a thin-

walled tubular specimen should be applied together with the equations

discussed in this section.

The external torque for a solid bar with a circular cross-section is

given as:
ra

Ts  2w f rr 2 'dr (21)
0

where T is current shear stress state corresponding to location r, and ra is

the radius of cross-section. The torque can be approximated by discretizing

the circular cross-section into a finite number of concentric circular rings

and assuming T to be constant over each ring. Thus

6
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n
Ts  2 -f Tir, 2 Arj (22)

i-I

Now Eqs. (12) and (13) along with Eq. (11a) can be solved to yield r i at each

fiber, if the value of ni (shear strain) at that fiber, specified by radius

ri, is known. Geometrical considerations show that radial lines have to

remain straight after deformation. Thus, one concludes that

ri
- na (23)
ra

where na is the strain at the outermost fiber.

Recall that there is a yield stress introduced in Eq. (8) when kj - I and

- 0. Hence, an elastic core always exists during deformation whose radius

re is easily computed as
Ty ra

re (24)
2 l.o na

If theexperiment is strain-controlled with strain at ra varying between -na

and +na, and with na in the plastic range, then the elastic core radius

remains fixed during all stages of loading after the first load reversal.

Now that ni, is known, the value of shear stress at each fiber ri can be

evaluated and used in Eq. (22). Note that at the points of load reversal, for

the fibers in the plastically deformed region, there exists an elastic range

governed by Eq. (19). This discrete type formulation of torque has the

advantage of being capable of describing the transient and residual stresses

in the bar as well.

7
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COMPUTATION

The governing equations are Eqs. (11a), (12), (13), (22), and (23) which

are summarized below:

d - dn 2 o (la)

2 wo
" ~dQ z e_,,~, ; dQ

T y-- + 2 u.k fo e'(z-z') -- dz' (2
- dz + o dz' (12)

- - f(z) and d4 Idni (13)
dz

Ts  2 Tiri 24ri (22)
i-I.

ri
S - la (23)
ra

Since the analytical solution of these equations is quite involved, and

in particular requires different treatment and derivation for different

hardening functions f(z), a numerical scheme has been developed to solve the

above equations. Since the relationship between t, the independent variable,

and n, the controlled variable is indirect, iterative techniques are an

integral part of this program.

In order to ascertain the degree of accuracy of numerical methods, a

hypothetical case was assumed. Namely, the field equations were solved

analytically using f(z) - exp(Oz), and the results were compared with those

obtained numerically. The difference between the two is so small that using

numerical techniques does not introduce any significant amount of error.

-i
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RESULTS AND DISCUSSION

Once the accuracy of the computer program was established, it was used to

predict the results of experiments performed on annealed AISI 4142 steel.

Figure 1 shows the dimensions of the tubular specimens, and these are also the

dimensions (without ID) of the solid specimens. The experimental results of

cyclic torsion tests conducted by the Plasticity Reiearch Laboratory at The

University of Iowa are presented along with the theoretical predictions in

Figures 2 and 3. This material does not show any appreciable amount of cyclic

hardening.

The most important factor in theoretical predictions is the choice of the

hardening function f(z). In this computation, the form

dC
- - C - (C-l)e - Bz (25)dz

has been used because of its simplicity and its proven usefulness in case of

cyclic loading (ref 1).

Following accepted procedures, the shear stress-strain curve for the

material was obtained from thin-walled tubular specimens. Then from this

data, the values of the material constants were determined to be: a - 1100, B

- 30,000, C _ 1.9, o _ 1 x 10 7 psi (6.89 x 104 MPa), 41 - 3.6 x 106 psi

(24.804 x 103 MPa), Ty - 6,500 psi (44.79 MPa). As can be seen from Figure 2

this set of constants predicts the experimental results reasonably well. The

same set of constants was then used to predict the results for a solid bar

test. As evidenced in Figure 3, theoretical and experimental results are in

reasonable agreement.

I
9
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As a consequence of the computational process the distribution of stress

in the cross-section was evaluated. Such distribution at different magnitudes

of torque during the first loading half-cycle is presented in Figure 4.

Notice that the outer fiber is the first one to yield; subsequently as more

torque is applied, the radius of the elastic inner core gets smaller.

Figure 5 presents the distribution of. the shear stress in the bar at

different stages of the first unloading. The flat portion in the lower curves

corresponds to the fibers which have surpassed this initial elastic unloading

and started plastic unloading. An interesting observation can be made here;

* when the amount of reversed torque gets larger, the size of the plastically

deformed region, i.e., the flat portion, gets bigger as well, but for each

individual fiber the developed plastic stress does not increase accordingly.

Rather, the applied torque is compensated for by elastic relief of shear

stress in the internal fibers. The radius of the elastic core has been found

to be re/ra - 0.0913 for this computation.

Shown in Figure 6 are the residual shear stress distributions during

first unloading (the solid curve) and first reloading (the dashed curve) when

the applied torque is equal to zero. The solid curve is the favorable one if

the applied torque during service is in the same direction as the initial

loading. However, if the applied torque during service is in the reversed

direction, then neither advantageous nor detrimental effects can be claimed as

is shown by Figure 5. It is seen that the residual stress distribution of

Figure 6 agrees with that proposed by Swift (ref 11) and that the residual

shear stress at the surface of the cylinder is smaller than that obtained by

neglecting the Bauschinger effect in the calculation.

10
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For purposes of investigating the implications of the model developed

here, a hypothetical material with appreciable cyclic hardening behavior was

studied. The shear stress-strain behavior of such material under fully-

reversed torsional loading is presented in Figure 7. The material constants

for this material were determined as: a - 1,000, 0 " 50, C - 1.5, po - 1 x

107 psi (6.89 x 104 MPa), P, - 4 x 106 psi (27.56 x 10 3 Mla), and Ty- 10,000

psi (68.9 MPa). A steady loop is established after a few cycles.

Figure 8 presents the residual stress distribution at zero applied torque

S." for each cycle up to and including the steady loop. It is seen that the

residual stress distribution does not change very much with respect to cyclic

torsion. The small increase in the residual stress incurred at the exterior

fiber at steady state is on the safe side when service load is applied.

%

"o-.'.-11
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Figure 6. Residual stress distribution at zero torque.
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